今天是大年三十,在开始我们今天的学习之前,我要先和你道一声春节快乐!

在上一篇文章中,我们在优化join查询的时候使用到了临时表。当时,我们是这么用的:

create temporary table temp_t like t1;
alter table temp_t add index(b);
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);

你可能会有疑问,为什么要用临时表呢?直接用普通表是不是也可以呢?

今天我们就从这个问题说起:临时表有哪些特征,为什么它适合这个场景?

这里,我需要先帮你厘清一个容易误解的问题:有的人可能会认为,临时表就是内存表。但是,这两个概念可是完全不同的。

  • 内存表,指的是使用Memory引擎的表,建表语法是create table … engine=memory。这种表的数据都保存在内存里,系统重启的时候会被清空,但是表结构还在。除了这两个特性看上去比较“奇怪”外,从其他的特征上看,它就是一个正常的表。

  • 而临时表,可以使用各种引擎类型 。如果是使用InnoDB引擎或者MyISAM引擎的临时表,写数据的时候是写到磁盘上的。当然,临时表也可以使用Memory引擎。

弄清楚了内存表和临时表的区别以后,我们再来看看临时表有哪些特征。

# 临时表的特性

为了便于理解,我们来看下下面这个操作序列:

图1 临时表特性示例

可以看到,临时表在使用上有以下几个特点:

  1. 建表语法是create temporary table …。

  2. 一个临时表只能被创建它的session访问,对其他线程不可见。所以,图中session A创建的临时表t,对于session B就是不可见的。

  3. 临时表可以与普通表同名。

  4. session A内有同名的临时表和普通表的时候,show create语句,以及增删改查语句访问的是临时表。

  5. show tables命令不显示临时表。

由于临时表只能被创建它的session访问,所以在这个session结束的时候,会自动删除临时表。也正是由于这个特性,临时表就特别适合我们文章开头的join优化这种场景。为什么呢?

原因主要包括以下两个方面:

  1. 不同session的临时表是可以重名的,如果有多个session同时执行join优化,不需要担心表名重复导致建表失败的问题。

  2. 不需要担心数据删除问题。如果使用普通表,在流程执行过程中客户端发生了异常断开,或者数据库发生异常重启,还需要专门来清理中间过程中生成的数据表。而临时表由于会自动回收,所以不需要这个额外的操作。

# 临时表的应用

由于不用担心线程之间的重名冲突,临时表经常会被用在复杂查询的优化过程中。其中,分库分表系统的跨库查询就是一个典型的使用场景。

一般分库分表的场景,就是要把一个逻辑上的大表分散到不同的数据库实例上。比如。将一个大表ht,按照字段f,拆分成1024个分表,然后分布到32个数据库实例上。如下图所示:

图2 分库分表简图

一般情况下,这种分库分表系统都有一个中间层proxy。不过,也有一些方案会让客户端直接连接数据库,也就是没有proxy这一层。

在这个架构中,分区key的选择是以“减少跨库和跨表查询”为依据的。如果大部分的语句都会包含f的等值条件,那么就要用f做分区键。这样,在proxy这一层解析完SQL语句以后,就能确定将这条语句路由到哪个分表做查询。

比如下面这条语句:

select v from ht where f=N;

这时,我们就可以通过分表规则(比如,N%1024)来确认需要的数据被放在了哪个分表上。这种语句只需要访问一个分表,是分库分表方案最欢迎的语句形式了。

但是,如果这个表上还有另外一个索引k,并且查询语句是这样的:

select v from ht where k >= M order by t_modified desc limit 100;

这时候,由于查询条件里面没有用到分区字段f,只能到所有的分区中去查找满足条件的所有行,然后统一做order by 的操作。这种情况下,有两种比较常用的思路。

**第一种思路是,**在proxy层的进程代码中实现排序。

这种方式的优势是处理速度快,拿到分库的数据以后,直接在内存中参与计算。不过,这个方案的缺点也比较明显:

  1. 需要的开发工作量比较大。我们举例的这条语句还算是比较简单的,如果涉及到复杂的操作,比如group by,甚至join这样的操作,对中间层的开发能力要求比较高;

  2. 对proxy端的压力比较大,尤其是很容易出现内存不够用和CPU瓶颈的问题。

**另一种思路就是,**把各个分库拿到的数据,汇总到一个MySQL实例的一个表中,然后在这个汇总实例上做逻辑操作。

比如上面这条语句,执行流程可以类似这样:

  • 在汇总库上创建一个临时表temp_ht,表里包含三个字段v、k、t_modified;

  • 在各个分库上执行

    select v,k,t_modified from ht_x where k >= M order by t_modified desc limit 100;

  • 把分库执行的结果插入到temp_ht表中;

  • 执行

    select v from temp_ht order by t_modified desc limit 100;

得到结果。

这个过程对应的流程图如下所示:

图3 跨库查询流程示意图

**在实践中,我们往往会发现每个分库的计算量都不饱和,所以会直接把临时表temp_ht放到32个分库中的某一个上。**这时的查询逻辑与图3类似,你可以自己再思考一下具体的流程。

# 为什么临时表可以重名?

你可能会问,不同线程可以创建同名的临时表,这是怎么做到的呢?

接下来,我们就看一下这个问题。

我们在执行

create temporary table temp_t(id int primary key)engine=innodb;

这个语句的时候,MySQL要给这个InnoDB表创建一个frm文件保存表结构定义,还要有地方保存表数据。

这个frm文件放在临时文件目录下,文件名的后缀是.frm,前缀是“#sql{进程id}_{线程id}_序列号”。你可以使用select @@tmpdir命令,来显示实例的临时文件目录。

而关于表中数据的存放方式,在不同的MySQL版本中有着不同的处理方式:

  • 在5.6以及之前的版本里,MySQL会在临时文件目录下创建一个相同前缀、以.ibd为后缀的文件,用来存放数据文件;
  • 而从 5.7版本开始,MySQL引入了一个临时文件表空间,专门用来存放临时文件的数据。因此,我们就不需要再创建ibd文件了。

从文件名的前缀规则,我们可以看到,其实创建一个叫作t1的InnoDB临时表,MySQL在存储上认为我们创建的表名跟普通表t1是不同的,因此同一个库下面已经有普通表t1的情况下,还是可以再创建一个临时表t1的。

为了便于后面讨论,我先来举一个例子。

图4 临时表的表名

这个进程的进程号是1234,session A的线程id是4,session B的线程id是5。所以你看到了,session A和session B创建的临时表,在磁盘上的文件不会重名。

MySQL维护数据表,除了物理上要有文件外,内存里面也有一套机制区别不同的表,每个表都对应一个table_def_key。

  • 一个普通表的table_def_key的值是由“库名+表名”得到的,所以如果你要在同一个库下创建两个同名的普通表,创建第二个表的过程中就会发现table_def_key已经存在了。
  • 而对于临时表,table_def_key在“库名+表名”基础上,又加入了“server_id+thread_id”。

也就是说,session A和sessionB创建的两个临时表t1,它们的table_def_key不同,磁盘文件名也不同,因此可以并存。

在实现上,每个线程都维护了自己的临时表链表。这样每次session内操作表的时候,先遍历链表,检查是否有这个名字的临时表,如果有就优先操作临时表,如果没有再操作普通表;在session结束的时候,对链表里的每个临时表,执行 “DROP TEMPORARY TABLE +表名”操作。

这时候你会发现,binlog中也记录了DROP TEMPORARY TABLE这条命令。你一定会觉得奇怪,临时表只在线程内自己可以访问,为什么需要写到binlog里面?

这,就需要说到主备复制了。

# 临时表和主备复制

既然写binlog,就意味着备库需要。

你可以设想一下,在主库上执行下面这个语句序列:

create table t_normal(id int primary key, c int)engine=innodb;/*Q1*/
create temporary table temp_t like t_normal;/*Q2*/
insert into temp_t values(1,1);/*Q3*/
insert into t_normal select * from temp_t;/*Q4*/

如果关于临时表的操作都不记录,那么在备库就只有create table t_normal表和insert into t_normal select * from temp_t这两个语句的binlog日志,备库在执行到insert into t_normal的时候,就会报错“表temp_t不存在”。

你可能会说,如果把binlog设置为row格式就好了吧?因为binlog是row格式时,在记录insert into t_normal的binlog时,记录的是这个操作的数据,即:write_row event里面记录的逻辑是“插入一行数据(1,1)”。

确实是这样。如果当前的binlog_format=row,那么跟临时表有关的语句,就不会记录到binlog里。也就是说,只在binlog_format=statment/mixed 的时候,binlog中才会记录临时表的操作。

这种情况下,创建临时表的语句会传到备库执行,因此备库的同步线程就会创建这个临时表。主库在线程退出的时候,会自动删除临时表,但是备库同步线程是持续在运行的。所以,这时候我们就需要在主库上再写一个DROP TEMPORARY TABLE传给备库执行。

**之前有人问过我一个有趣的问题:**MySQL在记录binlog的时候,不论是create table还是alter table语句,都是原样记录,甚至于连空格都不变。但是如果执行drop table t_normal,系统记录binlog就会写成:

DROP TABLE `t_normal` /* generated by server */

也就是改成了标准的格式。为什么要这么做呢 ?

现在你知道原因了,那就是:drop table命令是可以一次删除多个表的。比如,在上面的例子中,设置binlog_format=row,如果主库上执行 "drop table t_normal, temp_t"这个命令,那么binlog中就只能记录:

DROP TABLE `t_normal` /* generated by server */

因为备库上并没有表temp_t,将这个命令重写后再传到备库执行,才不会导致备库同步线程停止。

所以,drop table命令记录binlog的时候,就必须对语句做改写。“/* generated by server */”说明了这是一个被服务端改写过的命令。

说到主备复制,还有另外一个问题需要解决:主库上不同的线程创建同名的临时表是没关系的,但是传到备库执行是怎么处理的呢?

现在,我给你举个例子,下面的序列中实例S是M的备库。

图5 主备关系中的临时表操作

主库M上的两个session创建了同名的临时表t1,这两个create temporary table t1 语句都会被传到备库S上。

但是,备库的应用日志线程是共用的,也就是说要在应用线程里面先后执行这个create 语句两次。(即使开了多线程复制,也可能被分配到从库的同一个worker中执行)。那么,这会不会导致同步线程报错 ?

显然是不会的,否则临时表就是一个bug了。也就是说,备库线程在执行的时候,要把这两个t1表当做两个不同的临时表来处理。这,又是怎么实现的呢?

MySQL在记录binlog的时候,会把主库执行这个语句的线程id写到binlog中。这样,在备库的应用线程就能够知道执行每个语句的主库线程id,并利用这个线程id来构造临时表的table_def_key:

  1. session A的临时表t1,在备库的table_def_key就是:库名+t1+“M的serverid”+“session A的thread_id”;

  2. session B的临时表t1,在备库的table_def_key就是 :库名+t1+“M的serverid”+“session B的thread_id”。

由于table_def_key不同,所以这两个表在备库的应用线程里面是不会冲突的。

# 小结

今天这篇文章,我和你介绍了临时表的用法和特性。

在实际应用中,临时表一般用于处理比较复杂的计算逻辑。由于临时表是每个线程自己可见的,所以不需要考虑多个线程执行同一个处理逻辑时,临时表的重名问题。在线程退出的时候,临时表也能自动删除,省去了收尾和异常处理的工作。

在binlog_format='row’的时候,临时表的操作不记录到binlog中,也省去了不少麻烦,这也可以成为你选择binlog_format时的一个考虑因素。

需要注意的是,我们上面说到的这种临时表,是用户自己创建的 ,也可以称为用户临时表。与它相对应的,就是内部临时表,在第17篇文章中我已经和你介绍过。

最后,我给你留下一个思考题吧。

下面的语句序列是创建一个临时表,并将其改名:

图6 关于临时表改名的思考题

可以看到,我们可以使用alter table语法修改临时表的表名,而不能使用rename语法。你知道这是什么原因吗?

你可以把你的分析写在留言区,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

# 上期问题时间

上期的问题是,对于下面这个三个表的join语句,

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=Z;

如果改写成straight_join,要怎么指定连接顺序,以及怎么给三个表创建索引。

第一原则是要尽量使用BKA算法。需要注意的是,使用BKA算法的时候,并不是“先计算两个表join的结果,再跟第三个表join”,而是直接嵌套查询的。

具体实现是:在t1.c>=X、t2.c>=Y、t3.c>=Z这三个条件里,选择一个经过过滤以后,数据最少的那个表,作为第一个驱动表。此时,可能会出现如下两种情况。

第一种情况,如果选出来是表t1或者t3,那剩下的部分就固定了。

  1. 如果驱动表是t1,则连接顺序是t1->t2->t3,要在被驱动表字段创建上索引,也就是t2.a 和 t3.b上创建索引;

  2. 如果驱动表是t3,则连接顺序是t3->t2->t1,需要在t2.b 和 t1.a上创建索引。

同时,我们还需要在第一个驱动表的字段c上创建索引。

第二种情况是,如果选出来的第一个驱动表是表t2的话,则需要评估另外两个条件的过滤效果。

总之,整体的思路就是,尽量让每一次参与join的驱动表的数据集,越小越好,因为这样我们的驱动表就会越小。

评论区留言点赞板:

@库淘淘 做了实验验证;
@poppy同学做了很不错的分析;
@dzkk 同学在评论中介绍了MariaDB支持的hash join,大家可以了解一下;
@老杨同志提了一个好问题,如果语句使用了索引a,结果还要对a排序,就不用MRR优化了,否则回表完还要增加额外的排序过程,得不偿失。